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. ABSTRACT 

We discuss a simple 1D model of the modification of Planck blackbody 

radiation by photonic band-gap materials (PBGs).  The  model  gives qualitative 

predictions for the  thermal power spectrum of 2D and 3D  PBG structures,  and 

quantitative  results for lD,  distributed Bragg  reflecting PBG thin films. 

PACS:  42.50.Ct,  42.70.Qs,  78.20,Ci,  78.66.-w 

I. INTRODUCTION 

One of the most interesting subfields of quantum optics is cavity QED - 
where microcavities impose nontrivial  boundary conditions on the quantized 

electromagnetic  field and  alter  the  matter-light  interactions of quantum 

electrodynamics.  One of the  first predictions of this theory  was the modification of 

atomic spontaneous emission rates,  through  the use of microcavities  to alter  the 

optical density of modes  from its free-space value. This phenomenon is often 

known as  the Purcell effect [l]. Since this prediction,  many theoretical  analyses 

[21 as well as  experimental confirmations  [3] of this effect have been  performed. 

Since the imposition of nontrivial  boundary conditions modifies the  electro- 

magnetic  Green’s function, the Feynman diagrams for any QED process must be 

altered  in  a cavity, giving  physical results that differ  from those  in free space. 
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Some examples of these cavity QED effects are: cavity-induced changes in the 

Lamb shift [41, and  the electron’s  gyromagnetic ratio (g-2)  [5], Rutherford 

scattering near mirrors [6], and Raman scattering between mirrors [7]. 

Initially,  most of these developments  were  discussed in  the context of simple 

geometric structures, such asl parallel-plane conducting cavities or 1D Fabry- 

Perot  resonators composed  from  two distributed Bragg-reflecting mirrors. 

However, in  the  late 1980s and early 1990s the existence  was demonstrated, both 

theoretically and experimentally of 2D and 3D periodic dielectric and metallo- 

dielectric structures that exhibit  fbll,  omni-directional  photonic stop  bands (or 

band gaps) for  both  degrees of photon  polarization [8,9]. Initially, the primary 

interest  in these materials was to alter atomic  spontaneous  emission rates - for 

instance to suppress them in order to produce a thresholdless microlaser [8,9]. 

Several theoretical and experimental [lo-191 studies of the emission  process in 

PBGs have appeared,  but  usually the  emitters  are considered to  be  pumped 

electrically or optically - not  thermally. 

In  section 11, we  will  review  some of the theory related to the calculation of 

thermal power spectrum. In section 111, we will  discuss how a finite 2D or  3D 

PBG structure can be qualitatively studied using a 1D formalism, following a 

model  originally  developed by John and Wang [ 101. In  the context of this model, 

we compute the  thermal power spectrum of a PBG filter in fkont of an emitting hot 

surface, as well as that of a heated PBG structure.  In section N ,  we  produce a 

quantitative theory  for  studying the off-axis spectrum of 1D PBG structures of the 

DBR type.  Finally, in section V we summarize and conclude. 

11. BLACKBODY  RADIATION,  EMITTANCE, AND NORMAL MODES 

A. Blackbody  Radiation 

Thermal radiation is  just spontaneous emission that  is  thermally pumped 

and  that  has a blackbody spectrum, which is in thermal equilibrium with its 
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surroundings. From the foundations of quantum mechanics, it is well  known 

that atomic oscillators  in  thermal  equilibrium  with  a  photon heat  bath at 

temperature T have an average energy E at frequency o given by the Planck 

expression [20] 

where 

as  usual, with kB the Boltzmann .constant. The  energy density per unit frequency 

u can be written as 

.Uo,p> = p(o>  E(O,P)  , (3) 

where p ( o )  is  the electromagnetic density of modes. Crucial to our discussion 

here is that  the modification of the density of modes p ,  by introduction of a cavity  or 

PBG structure,  say, will alter  the energy density and hence the  radiant power, e, 

emitted by the surface of a perfect  blackbody.  For fiee-space 

the density of modes f s  has  the well-known  form 
n 

(4) 

power per unit  area 

boundary conditions, 

Z C "  

from which the blackbody  power cPBB takes  its  usual form of the Planck Law [19] 
n 

B. The Direct Method of Cavity QED 

As noted  above, thermal emission is just  a form of spontaneous emission - 
and  in  the  quantum optics and cavity QED community, the modification of 

spontaneous  emission by cavities or  PBG structures  is  a well-known  effect 110-191. 
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where 

Hk = p .  Ek(r,%) (8) 

is  the interaction Hamiltonian for a radiating dipole of moment p ,  I i )  and I f )  are 

the  initial  and final atomic states, and r the dipole  location.  The  electromagnetic 

mode density p(a),  as well as the spatially  dependent  modal hc t ions  E(r,o), must 

! be  computed to generate a result - and  this amounts to solving the Helmholtz 

wave  eigenvalue equation  in an inhomogeneous  media [12]. This solution is 

extremely hard to come  by in 2D and 3D calculations [ X ] ,  and is not  exactly a 

simple matter even in finite 1D structures [ 141. 
The transition rate U k ,  Eq. (7), is  the time-averaged rate at which a radiating 

dipole  located at a position r emits electromagnetic  energy of frequency % into a 

spatial mode k. For a collection of such emitters, with some  known  frequency 
spectrum of emission, the  rate U(r,*) can be averaged  over  position r, spherical 

angle  element a/&, and multiplied by the emitter power spectrum &(a) to obtain 

the  thermal power output  into a particular element of solid angle d a k .  This 

approach has been used successfully in  studying the spontaneous emission of 

light-emitting GaAs semiconductor material embedded in a lD,  thin-film, PBG 

structure [16]. The power spectrum &(a) in  this case is  just  that of the 

spontaneous emission of the electrically  pumped  semiconductor material. To 

calculate the  thermal spectrum by this “direct” method,  one simply uses the 

blackbody thermal spectrum &(a,p), Eq. (6) ,  instead. However,  because of the 

numerical  and  theoretical  difficulties involved in solving the Helmholtz 

eigenvalue equation for a general PBG structure,  the  thin-film,  thermal 
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emissivity community has independently developed a  simpler  “indirect” method 

based  on Kirchoffs  Law of detailed balance for thermal equilibrium. This indirect 

method works well for 1D thin-film  structures,  and  agrees  with  the more 

computationally intensive  direct calculation in  all cases of interest 1221. This 

indirect method of emission  calculation is  apparently not  well  known in  the cavity 

QED community, where the  direct method is used almost exclusively [2,11-161. 

For that reason, we  review it here briefly. 

C. The  Indirect  Method from Kirchoffs Law 

Let us consider a  multi-layered,  thin-film structure  and, for simplicity, 

concern ourselves  with  the discussion of optical radiation  transmission  and 

reflection  on-axis,  normal to the surfaces, as shown in Fig. 1. Let iJ‘ and & be the 

real  transmittance  and reflectance for the film - representing  the  ratios of 

transmitted  and reflected optical power  (Poynting’s vector) with  respect to an 

incident flux from the  left, normalized to unity. If  no absorption (or gain)  is 

present,  then  conservation of energy  requires that f l  + = 1. However,  if 

absorption is  present  in  the layers, then we  may  define a  real absorptance by C/e  = 
1 - & - f l ,  which is again a  statement of conservation of energy. However, from 

Kirchoffs Second Law, we know that the  ratio of the  thermal  emittance &‘to the 

absorptance C / e  is  a  constant,  independent of the  nature of the  material - and 

that  that constant is unity when the source is  a perfect  blackbody [22,23]. Hence, in 

this case &‘= & and we may write  the  fundamental  equation for calculating  the 

thermal  spectral power of a 1D thin film structure, from Kirchoffs  Law, as 

&k(a) = &$(a) = 1 - &(a) f l k ( a ) ,  (9) 

where &(w) has  the  interpretation  as  the  ratio of the  thermal optical power 

(Poynting‘s  vector) emitted at frequency w into a spherical-angle element d& (by a 

unit  surface area of the  thin  film), to  the power emitted  per  unit  area by a 

blackbody at the same temperature 2’. 
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This  analysis is quite well suited for 1D  PBG structures, where &k(w) may  be 

computed rapidly by matrix  transfer techniques. Some care must be taken to 

account for the complex  indices of refraction used to model the presence of 

absorbing  dielectric layers - which  will  emit  upon thermal excitation [24,25]. In 

principle, there  is no  reason that  the method  could  not  be  extended to 2D and 3D 

PBG structures using the higher-dimensional matrix techniques developed by 

Pendry  and  co-workers [26]. It would  be a simple matter to include  absorption in a 

2D or 3D matrix transfer code and hence  model the directional  power  emission of 

an actual higher-dimensional PBG. 

Once the emittance &k(w), Eq. (9), is obtained, then multiplication by the 

Planck power spectrum, Eq. (6), gives the power spectrum of the thin-film emitter 

&TF in  terms of the thin-film emittance gk (w), and the black-body spectrum TF 

@B(w), 

which  can then be compared  directly to experiment. 

In the next section, we  show  how matrix transfer techniques can be  used to  

compute the on-axis,  thin-film, PBG power spectrum,  appropriate for the 

qualitative predictions of a 2D or 3D structure in  the John-Wang  approxi-mation. 

III. ON-AXIS EMITTANCE AND THE JOHN-WANG MODEL 

One of the difficulties in dealing  with the theory of 2D and 3D PBG structures 

is  the computational  complexity  associated  with  solving the hl l ,  vector, Maxwell- 

wave,  eigenvalue  problem in a 2D or 3D inhomogeneous  dielectric [91. Certain 

Fourier  techniques  can be  used to establish the eigenvalue  (dispersion)  curves  for 

infinite 2D or 3D periodic structures, which  possess a high  degree of symmetry. 

For finite structures, some  success has been  achieved using 2D and 3D matrix 

transfer [26] and finite-difference  techniques [27]. However, these methods are all 
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computationally intensive, and  hence the  results lack a  certain  qualitative level of 

physical understanding. 

A.  The John-Wang Model 

Early on, S. John  and J. Wang  proposed a simple qualitative model  for an 

infinite 2D or 3D photonic  bandLgap structure [lo]. This model  was extended later 

by our  group to study dispersion, spontaneous emission, and  nonlinear effects in 

finite PBG structures [12-14,28-331. The  basic  idea of the model is to  assume that 

there  exists  a 3D PBG structure whose  Brillouin  zone (BZ) is perfectly spherical 

and the same for  both  degrees of polarization, as shown in Fig. 2. In fact, it was 

this  search for a  nearly spherical BZ that motivated the  early  experimental work 

of Yablonovitch [8,9]. The  analogous  model in 2D is  a  structure whose BZ is 

circular and  the same for  both  polarization  degrees of freedom. In both  cases, this 

approximation is  essentially equivalent to saying that the electromagnetic  wave ‘ 

“sees” the same periodic potential - regardless of its polarization or direction of 

propagation through  the PBG. This approximation means that  the same 1D 

periodic potential is seen by all propagating  modes, and so the problem  reduces to  

solving the 1D wave equation. This 1D problem  may  be attacked by analytical 

methods or simple 1D matrix  transfer techniques. In  either case, the  quantitative 

on-axis  emission  spectra of finite, lD, PBG thin-film  stacks,  corresponds 

qualitatively to  the 2D or 3D homogeneous  emission of the hypothetical  John- 

Wang structure, Fig. 2. The approximation is  equivalent to  assuming that  the 

band structure does  not  change  much  for differing orientations of the photonic 

crystal. 

To begin then, we calculate the on-axis emittance and thermal spectrum of a 

lD, thin-film stack, Fig. 1. The results should  give a  qualitative indication of the 

omni-directional thermal power spectrum properties of 2D and 3D structures 
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which  have on the order of the same lattice spacing and unit cell  size as  the 1D 

stack. 

B. Thermal  Power  Spectrum  from  Matrix  Transfer 

The basic model  we shall use is  illustrated  in Fig. 1. We consider light 

incident from the left in air (index of refraction no = 1 )  onto a lD, periodic, quarter- 

wave stack,  distributed Bragg  reflector (DBR) composed of alternating  quarter- 

wave layers of (possibly) complex  indices nl and n2, and of thicknesses a and b ,  

respectively. This DBR photonic band-gap stack  is  then assumed to be mounted 

flush on a dielectric substrate of complex  index n3 of thickness d ,  which is many 

' wavelengths thick at the  quarter-wave reference frequency, 00 = hoc = 2m / A0, 

where A0 is  the  quarter-wave reference (midgap) wavelength, and c the vacuum 

speed of light.  Finally,  the  substrate  terminates at the  right  in air, with index 

no = 1. 

In this section, we  will consider  only the on-axis thermal emission  process, 

leaving angular effects to  the next section.  Consider again in Fig. 1 that light of 

unit  amplitude  is  incident from the  left. We wish to use  matrix  transfer 

techniques [13,14,28-321  to compute the complex transmission  and reflection 
coefficients, X and A, and the associated transmittance and reflectance, ,-f = I XI 2 

and & = I R 12, respectively.  The left-hand fields / and R are  linearly  related to 

the right-hand electric  fields 0 and X by 

[ A I  = 6i 1 2 1  (11) 

where M is the two-by-two transfer  matrix. From linearity alone, we can conclude 
A 

that must have the form  [321, 
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(In  the absence of absorption, we can  apply time-reversal symmetry to obtain Mlz 
* = M i l  and M2, = M,,,  but that symmetry does  not  hold in  the  present work where 

absorption  is an  integral  part of the problem [32].) Hence,  once the  transfer 

matrix % is known, then  the electric  field transmission and reflection  coefficients 
can be extracted from the  elements X = 1 / M I 1  and R = X M21 = M21 lM11. The 

Poynting-  vector transmittance and reflectance f l  and 8, describing power flow, 

are then [23], 

& = 1 h . I  = 2 

with &'+ & = 1 only if no, n l ,  n2 and n3 are 

M2, 
2 

IGI 
all real (lossless).  When  absorption is 

present,  and hence n l ,  n2, or n3 are complex, &' and &' can be used to give the 

absorptance & and emittance 8, as per the fiuldamental equation (9). 

For a piecewise constant index  profile,  such as in Fig. 1, the  transfer  matrix 

of the  entire  stack M can be  decomposed into  the product of two elementary 

matrices A.. and n(pi). The discontinuity  matrix AG describes the boundary 

n 

A n h 

V 

conditions for the  transfer of the electric field from left to right across  a 

discontinuous ni + n .  interface,  accounting for the  Fresnel  reflection  and 

transmission  coefficients.  The  propagation matrix n(pi) describes  free 

propagation between two interfaces  a  distance ai apart  in a region of constant 

h 

index ni, where 

pi = ni ai& . 

These two matrices can be written [13,14,32] 
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where 

are  the Fresnel discontinuity coefficients at a ni to nj interface. If we  now consider 

the  stack of Fig. 1, we can  consider the DBR PBG thin-film coating as  a repeated 

' unit cell  whose transfer  matrix  is 
h n h  n * = Tup) A,, n<s> A,, Y 

where we define p = nla w Ic and q = nab w / c .  If the PBG coating is N periods 

thick, then  the  transfer matrix for the  entire  stack, Fig. 1, is 

where s =ngdwlc, for a  substrate of thickness d .  If no, n l ,  n2, and n3 are real,  then 

relatively simple analytical expressions for the matrix elements M e ,  Eq. (121, can 

be  given [13,14,32]. However,  since  we are only interested  in  the cases where at 

least one of these indices is complex,  we  will carry out the  matrix multiplication 

numerically, to  obtain M as  a function of no, n l ,  n2,  n3, a ,  b ,  d ,  N ,  and o. Then the 

transmittance and reflectance  coefficients f l  and 8 are given  by  Eq. (13), with the 

emittance 8 obtained  therefrom by the fundamental equation (9). 

n 

C. Simple  Quarter-Wave  Stack 

We  now compute and plot the emittance a(@), Eq. (91, by the indirect method 

outlined  above for the quarter-wave stack of Fig. 1. The first  set of plots in Fig. 3 

shows the emittance when  only the  substrate contains absorbers, so we take no = I ,  

nl = G, n2 = 2,  and n3 = 3 + 0.03i. The substrate  is very  thick,  with d >> ;\o. Recall 
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that  at  a given  frequency w = 2lcc/il,  a complex  index n = n’ + in” implies an 

absorption  per unit length of 
4x11’’ 2 n”o a = - = -  

h c y  ( 19) 

so that  the intensity  falls to I / e  in  the Beer’s Law distance I / a. Note that  the 

absorptance, thence, increases linearly with increasing frequency.  For the  rest of 

this work we make the  quarter-wave assumption for the thin-film layers, namely 

n;a = nib  = &/4,  where wo = 2m /;lo is the midgap  reference  frequency of the PBG, 

for  which reflection is maximum. We define n; =Re {n l }  and ni =Re {n2}.  

, Hence, the  real  phase factors become  Re /pl = n; awlc  = Re { q }  = n;l bwlc = IC@ 

/ (2wd,  showing that  a quarter-wave of phase lc/2 is accumulated whenever o = 
00. We take  the  substrate  thickness  d to  be many  optical wavelengths, d = 100 

A&;, to model a very  thick substrate. 

1. PBG as a passive filter 

In Fig. 3, we  show the emissivity & as a fimction of the scaled  frequency 

w /  00. With  only the  substrate index n3 = 3 + 0.03i complex, this models the 

situation where a lossless 3D PBG sits atop a heated hotplate  (substrate). In this 

case, the PBG coating acts as  a passive filter - blocking heat  radiation emitted by 

the  substrate at band-gap frequencies from reaching the left-most no region. We 

illustrate  the effect with N = 1,3,  and 5 periods in  the PBG, in Figs. la,  lb ,  and IC, 

respectively.  The dotted line at 8 = 1 corresponds to  the  emittance of a perfect 

blackbody.  However, the thick substrate of relatively high index ni = 3, is  not a 

true blackbody.  Even  though the  substrate  is highly absorptive, not all radiation 

incident &om the left - in  the absence of the PBG thin film - would  be absorbed. 

This is because the no + n3 interface is highly reflective,  with  a  reflection 

coefficient  given by 
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which is R03 G 0.25, for no = I and n3 = 3 + 0.03i.  Hence, the uncoated,  absorptive 

substrate alone,  when heated, does  not emit as efficiently as  a perfect  blackbody - 
but only 75% as efficiently.  This so-called  “grey-body” emittance of s 0.75 is 

plotted as  a dashed  line in Fig. 3. 

So now  we see an interesting effect.  The  PBG-coated, heated  substrate  emits 

poorly in  the band gap, as was  expected, and as  is clearly shown in Fig. 3. The 

emission inhibition or filtering becomes  more pronounced as  the number of 

: periods N is increased and the gap thereby deepens. What is  a  bit  surprising  is 

that,  at  the photonic pass-band transmission resonances [13,32], the  substrate’s 

emission is enhanced from the grey-body  level all  the way up to  the perfect 

blackbody rate.  This occurs  because the  transmission resonances correspond  to 

frequencies at which the PBG thin-film stack acts  as  an  anti-reflective coating - 

eliminating  the no to  n3 impedance  mismatch seen by the  substrate alone. Since 

all incident radiation from the left at these select frequencies “tunnels”  through 

the PBG into  the  substrate - all of the power is consequently  absorbed and the 

entire  structure behaves then  as  a blackbody - which is, of course,  defined as  an 

object that absorbs all incident radiation. 

So,  in  summary,  the  results of Fig. 3 illustrate that  a passive, lossless PBG 

coating  can inhibit  the  thermal emittance of a  substrate at band-gap frequencies 

- but enhance it  at band-edge transmission resonance frequencies. This  result 

applies quantitatively to the on-axis  emissivity of an  actual 1D thin-film structure. 

However, as per the John-Wang  model - this  result  tells us qualitatively what to 

expect at all angles for a 3D PBG mounted  on a heated substrate. 



2. PBG as active  emitter 

In Fig. 3, all of the absorbers (emitters) were  placed in the  substrate,  as 

indicated by the shaded region of the  inset, and the PBG coating  acted as  a passive 

filter.  In  the  next set of plots, Figs. 4 and 5, we  move the  emitters from the 

substrate  into  the PBG itself, where  active enhancement and  suppression of the 

thermal emission  process  occurs,  due to the PBG-altered electromagnetic mode 

structure [12-161. We expect  different  effects,  depending on whether the  emitters 

are localized in  the low-index n l  or high-index n2 regions,  Figs. 4 and 5, 

respectively.  In  particular, i t .  is well  known that low-frequency band-edge 

: resonance - at about w /  00 z 0.75 here - occurs  when the normal-mode  field at 

that frequency has  intensity anti-nodes localized in only the high-index n2 layers. 

The situation  is reversed at the high-frequency  band  edge, here at w /  wo 5 1.25, 

where the field-mode intensity maxima are localized in  the low-index nl layers 

@I. 
This band-edge enhancement phenomenon manifests  itself  in  the emission 

process.  If emitters  are doped into  the low-index nl layers,  then  they will  couple 

maximally to the high-frequency band-edge resonance modes, as per Fermi’s 

Golden Rule, Eq. (7). Thermal emission  will thus be enhanced  most at this high- 

frequency  band  edge, as seen in Fig. 4. The  opposite  occurs  when the  emitters  are 

switched  over to  the high-index n2 layers, where now emission enhancement  is 

expected to be most pronounced at the low-frequency  band-edge resonance, as seen 

in Fig. 5. These  effects  have  been  seen  before experimentally by our group in an 

electrically  pumped emitting region within a 1D quarter-wave stack [16]. In that 

case, the  emittance was computed theoretically by the  direct method, involving 

explicit calculation of the eigenmodes for Fermi’s Golden  Rule, Eq. (7). In this 

current work, we use the  indirect method - appropriate for emitters  in  thermal 

equilibrium - and we see the same  type of results. 
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In  Fig. 4, we take no = 1 ,  nl = G + i GI 100, n2 = 2,  and n3 = 1 ,  so that only the 

low-index nl layers, in the free-standing PBG thin film, are emissive.  The  plots of 

Fig. 4 show that, as we increase the number of periods N E f1,3,51, the active 

emission is suppressed in  the gap and enhanced at the edges - with the most 

pronounced  enhancement at the high-frequency  band  edge, as was  predicted. 

The curves slope upward to the  right due to  the fact that  the assumed 

dispersionless imaginary index n;', from  Eq. (19), implies an absorption per-unit- 

length that increases linearly with increasing frequency. (This slope  did  not 

appear in  the emittance curves  for the complex n3, with absorbers only in  the 

' substrate, Fig. 3, because there  the  substrate is  taken so thick that all incident 

radiation entering it is eventually  absorbed,  regardless of frequency.) 

The  plot in Fig. 5 shows the emission  when the absorbers are swapped  from 

the low- to high-index  layers,  with nl = G, n2 = 2 + O.O2i, and n3 = 1.  The  emission 

is suppressed at band-gap frequencies, as before, but  the most  pronounced 

enhancement  occurs at the low-frequency  band-edge, as expected. 

In summary then, we expect a passive PBG filter or coating to suppress and 

enhance the  thermal power  spectrum of an object in  the band gap, as illustrated 

in Fig. 3. This result applies qualitatively at all angles to  the emission filtering 

with a 3D PBG coating and gives exact quantitative predictors for on-axis 

emittance measurements using a 1D thin film. In Figs. 4 and 5, we  show  how the 

emittance is altered by placing the thermal emitters inside the PBG. 

D. Absolute  Thermal  Power  Spectrum 

The emittance &'k(w) we have computed so far gives the relative power 

emitted at each  frequency  with  respect to a perfect  black-body emitter. To find the 

absolute  thin-film (TF) power spectrum emitted, &k as measured by a distant 
TF 
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TF detector, we need to multiply the thin-film  emissivity dQk by the Planck  blackbody 

(BB)  power  spectrum p B ( o ,  'T3, as per  Eqs. (6) and (10). 

1. Properties of the Planck  spectrum 
The  Planck spectrum &BB(w,T), Eq. (6), can be differentiated to find the 

location of the  thermal maximum %&T), which is 

where w ( z )  is the "product  log"  function [35], which  gives the solution for w as a 

hnction of z in the transcendental equation z = w ew.  Then the actual maximum 

' value taken on  by the Planck  spectrum at this frequency is 

which illustrates  the well-known fact that the maximum power increases 

cubically with temperature. To scale this absolute maximum out, we  normalize 

by this peak  power to get  the scaled  blackbody  spectrum 

pBB(o,T) = cPBB(o,T) ~ (""1 0.70 
flma(T) kBT exp (ho/k,T) -1 ' 

which, of course, now always has a maximum of unity, by design. The thin-film, 
normalized  power  spectrum is easily  seen to be the product p T F  = @F&'BB. 

2. Thin-film  thermal  spectrum 

Now  we take the emittance curves,  Eq. (9), for the passive PBG  coating, 

Fig. 3, and multiply by the normalized thermal power spectrum, Eq. (23), as per 

Eq. (10). This gives us the  set of plots in Fig.  6.  Depending  on the temperature T ,  

the maximum of the Planck spectrum can be made coincident with  the low- 

frequency band edge, the high-frequency band edge, or the midgap, as illustrated 

in Figs. 6a, 6b, and 6c,  respectively.  The  blackbody temperature is, of course, 



scaled to the midgap frequency o0, via  Eq. (21). For example, if the Planck 

spectrum peaks at midgap, then from Eq. (21) we have the condition on the mid- 

gap (MG) temperature TMG,  

MG hao  E 2.82 kBT , 

which  allows us to  relate the figures to an absolute temperature scale, T ,  and the 

geometric lattice  parameters, a,  by n i ,  and n i ,  as per the  quarter-wave  stack 

condition 

where n> = Re (ni), as before. 

In Fig.  6,  we use the same  passive filter parameters  as before,  namely, no = I ,  

nl = f i ,  n2 = 2, and n3 = 3 + 0.03i. The  solid curves are  the normalized power 

spectra P(O,T), Eq. (23). The dotted lines  are  the  spectra of a perfect  blackbody, 

while the  dashed  lines  are  the  spectra of the  uncoated,  high-index (nd = 3) 

substrate (greybody). We see in Figs. 6a and  6b, that  the power radiated by the 

substrate  is  enhanced when the  temperature T is such that  the Planck peak 

aligns with either  the low- or high-frequency  band  edges,  respectively. In Fig.  6c, 

we see thermal emission suppression when the  temperature choice aligns  the 

Planck  peak with the midgap  frequency, 00. 

In Figs. 7 and 8, we again move the  emitters from the  substrate  into  the PBG 

coating and take n3 = 1 ,  leaving a free-standing absorbing (emitting) DBR grating. 

In  Fig.  7,  we have no = 1, nl = fi + i f i l 1 0 0 ,  n2 = 2,  and n3 = 1 .  The  Planck peaks 

are located at the low-,  high-, and midgap fiequencies in  Figs.  7a, 7b, and 7c, 

respectively.  Since the  emitters are in  the low-index layers,  there is a preference 

toward  emission enhancement at the high-frequency  band-edge frequency. The 

reverse  occurs in Fig. 8, where no = I ,  nl = f i ,  n2 = 2 + O.O2i, and n3 = 1. 
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IV. OFF-AXIS SPECTRUM 

In this section, we calculate the off-axis spectrum of our 1D PBG thin film as 

a function of incident angle 80. We begin with a review of an off-axis matrix 

transfer formalism suitable for  complex  indices of refraction. 

A .  Off-Axis Matrix  Transfer  for  Absorbing  Media 

The generalization of matrix  transfer to  include off-axis propagation in 

absorptionless media  can be found in many texts [36-381. However,  when the 

indices of refraction are complex,  some  technical subtleties  appear [24,251. For 

that reason, we review the method  carefully  here. 

The  off-axis  boundary  conditions and propagation phases can be  accounted 

for  by simple  modifications to the on-axis  discontinuity and propagation  matrices, 

6..  and n ( p i ) ,  respectively, Eq. (15). As shown in Fig. 9, there  are two  independent 

polarization  modes to consider, the s-polarized TE  mode, and the p-polarized TM 

mode. For both s and p polarization, the phase p i  accumulated as the  ray 

traverses an index ni slab of thickness ai, needs to be adjusted by a factor of cos Oi, 

which  projects out the on-axis component of the wave  vector ki. Hence, Eq. (14) 

h 

W 

becomes, 

pi = ni ai o cos Bi/c , 

where 8i is  the angle ki makes with the normal of the  slabs, as shown in Fig. 9. 

Hence, the propagation matrix n(p.), Eq. (15b), remains  the  same  with  the 

identification pi  + p i  cos Oi. However, the discontinuity matrix ALj., Eq. (15a), takes 

on two different forms  for the s and p polarizations,  reflecting the different 

boundary  conditions  on TE versus TM modes at the ni + n .  interface.  The form of 

A 

L 
A 

rt 
Eq. (15a) remains the same,  with the identification that 6u + $j or 6.. , for  TE (s- 

S +  pl: 

rJ 

polarized) or TM (p-polarized)  modes,  respectively,  where we define 
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ni cos €Ii 

n. COS ei 
4 1  that remains is to  establish a relationship  between the angle of incidence ei in 

an arbitrary layer, ni, with the measured  angle of incidence 00 from the  “I-KSt 

semi-infinite  medium of index no, Fig. 9. This is  just given  implicitly in  the  ith 

layer by Snell’s law [251, 

no sin 8, = ni sin ei .  (28) 

Hence, Eqs. (15), (26), and (27) provide a complete set of matrices for the Off -ax iS  

problem.  The same formalism  holds, independently of whether  the ni are 

complex or not [24,25]. However, in general, when ni is complex then  the 

associated quantity ei is also  complex, and it can no  longer  be interpreted as the 

physical  angle. In  this case,  which we are concerned with here, the formalism 

becomes merely a bookkeeping  device that tracks  the  angular dependence of the 

power flow from  left-to-right across the  structure. 

B. Off-axis Spectrum for Standard 1D Thin  Films 

In  this section, we compute the off-axis emittance for the thin-film 

parameters considered in  the previous  sections. First,  let  us consider the case 

when the  substrate index n3 is complex, but nl and n2 are  real, so that  the PBG 

thin-film  coating in Fig. 1 acts as a passive  filter. We take no = I ,  nl = f i ,  n2 = 2, 

and n3 = 3 + 0.03i. It is instructive to plot the emittance Cp(o,eo) as a three- 

dimensional  surface  plot,  which  shows how the band  gap shiRs for changing 00. 

We  do this  in Fig. 10, where we plot the s-polarized,  p-polarized, and unpolarized 

emittances @(a Od, @(o, ed, and @(o, &+, respectively in  (a), (b), and (c). Here, 

(@ + bpp) / 2 ,  since  for  unpolarized emitters  either polarization mode is 

l8 



equally  likely to  be  occupied.  We  see in Fig.  10 that the s-gap and p-gap both  shift 

from the  same gap to different higher frequency  gaps as  the  incident angle 80 

ranges from 0 to n / 2 .  The s-gap remains deep and wide, whereas the  p-gap  tends 

to narrow and fill in.  In  particular,  the  p midgap at 00 G 0 shifks to the low- 

frequency p-band-edge resonance, near 80 s 7d2, Fig. lob. This means that  the 

thin film has  a very low emittance on-axis, but  a high value at large angles off- 

axis. The width of the gap do0 at 00 = 0 is  determined solely by the  material 

parameters n> = Re {n l }  and n> = Re (n21, via [32,36,371 

where An = n2 - nl and E = (nl + n2) / 2 .  (The  approximation  holds for An /Zcc I . )  

Note in Fig.  10 that both the s andp emittance drops  to  zero at all frequencies 

as 80 + n / 2 .  This is because the PBG coating can only modulate  the basic 

Lambertian emission angular dependence,  which is proportional to  cos20O. Hence 

the emittance vanishes as 80 + d 2 ,  regardless of frequency. 

For completeness, we  now consider the case of a free-standing PBG with 

absorbers (emitters)  in  the nl or n2 layers, with n3 = no. In Fig.  11, we take = n3 

= 1 ,  nl = fi + i G/ 100, and n2 = 2 .  We see that  the s-polarized and  p-polarized 

emittance  are modulated slightly differently, in Figs. l l a  and l lb ,  respectively. 

Both  curves  show marked emittance resonances at the high-frequency  band  edge 

and relatively large angles off-axis.  The  unpolarized angular  spectrum is  shown 

in Fig. l lc .  Similarly, in Fig. 12, we take no = n3 = 1,  nl = 6, and n2 = 2 + 0.02i. We 

see similar effects as in Fig. 11, but now with the  larger emission resonances at 

the low-frequency side of the gap. 



V.  SUMMARY AND CONCLUSIONS 

In this paper, we have tried to give a general discussion of the theory of 

thermal power-spectrum modification in l D ,  periodic, photonic band-gap 

structures. The theory applies qualitatively to  2D and 3D photonic band-gap 

materials,  within  the John-Wang approximation. The 1D thermal spectrum 

calculations  should  easily be extendable to the 2D and 3D matrix  transfer method 

of Pendry  [26],  applicable to higher-dimensional PBG structures. We also present 

a formalism for computing the off-axis thermal  spectrum, which gives 

quantitative results which are directly  comparable to  experiment. 
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FIGURE CAPTIONS 

Fig. 1. We indicate  the basic photonic band-gap,  thin-film  coating  under 

investigation for  emissivity  control. An N-period quarter-wave  stack of 

alternating indices of refraction nl and ng coats a many-wavelength-thick 

substrate of index n3. The entire  structure  is embedded in  a medium, 

taken to be air, no = I .  

Fig. 2. The underlying assumption of the John-Wang  approximation is to  replace 

a 2D or 3D PBG structure  with  an effective 1D model (a). This is 

equivalent to assuming a 2D or 3D PBG structure with a perfectly circular 

or spherical Brillouin zone, respectively, for both polarizations (b). 

Fig. 3. The emissivity of an  absorbing substrate (n3 = 3 + 0.03i) coated by a 

lossless, PBG thin-film (nl = fi and n2 = 2).  The  solid line  is  the on-axis 

emittance &‘(w), Eq. (9). The dotted line  is  the  emittance of a perfect 

blackbody substrate, while the dashed  line is  the  actual grey-body 

emittance of a substrate of index n3 = 3 + 0.03i. We see that  the emittance 

is  suppressed  in  the band  gap as  a function of the number of periods, N. 

In  the  pass  bands,  the emittance is enhanced all the way  to unity at the 

transmission  resonances,  where  the PBG acts as  an anti-reflective 

coating. 

Fig. 4. Here,  the substrate is  lossless, n3 = I ,  and  the  absorbers are  in  the 

absorbing nl = fi + i d?/ I00 region, with ng = 2 lossless. The curve 

increases  linearly  overall  with o/oo, since a complex nl = n; + z nl 

implies a loss-per-unit length that increases linearly with frequency.  The 

emission enhancement is highest at the high-frequency band edge, where 

the electric  field modes  overlap preferentially with the low-index nl layers. 

Fig. 5. The absorbers are in the high-index ng = 2 + 0.02i layers, with nl = fi and 

n3 = I lossless. Emission enhancement  is now strongest at the low- 

. # I  



frequency  band  edge,  where the field  modes  overlap predominantly with 

the high-index n2 layers. 

Fig. 6.  The  absolute thermal power spectrum  with  lossless no = I ,  nl  = f i ,  n2 = 2, 

and absorbing n3 = 3 + 0.03i. The temperature  is chosen so that  the 

blackbody peak aligns <with  the low-fkequency band edge (a), the high- 

frequency  band  edge  (b), and midgap (c). 

Fig. 7. Same as Fig. 6,  but  with no = I ,  nl = fi + i f i /  100, and n3 = I .  Thermal 

peak is at the low and high band  edges and midgap, (a),  (b),  and (c), 

respectively. Enhancement is most  pronounced at the high-frequency 

band  edge  because  absorbers are in the low-index nl layers. 

Fig. 8. Same as Fig. 7, but with  absorbers in high-index n2 layers. Emission is 

therefore  most  pronounced at the low-frequency  band  edge. 

Fig. 9. Ray  propagation  through a multi-layer stack. The incident angle 60 from 

the air on the left is a tunable parameter. Boundary  conditions  differ  for 

TM waves  (p-polarized) and TE waves  (s-polarized, out of page). 

Fig. 10. Emittance a(@, 60) as a function of stack incident angle 60 and scaled 

frequency co/ coo. TE-mode  (s-polarized)  emittance .@ is plotted in  (a), TM- 

mode (p-polarized) emittance c.%p in (b), and unpolarized = ( I  12) (@ + 

@) in (c). Here, the  substrate  is emissive,  n3 = 3 + 0.034 while the PBG 

coating is N = 5 periods  thick  and  lossless, n l  = fi, n2 = 2. Note  how the s- 

and p-gaps shift to higher  frequency  with  increasing 80. 

Fig. 11. The s-, p-,  and unpolarized angular  emittance &(o, 6O) for an n l  = d? 
+ i */I00 emissive PBG coating  with no = I ,  n2 = 2, and n3 = I lossless. 

Fig. 12. Angular emittance &(co,Od, same as Fig. 1, but with absorbers in  the high- 

index n2 = 2 + 0.02i, with no = I ,  n1 = *, and n3 = 1. 
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